Math 270: Differential Equations Day 13 Part 2

Section 4.7: Variable-Coefficient Equations

By variable-coefficient equation, we mean $a_2(t)y'' + a_1(t)y' + a_0(t)y = f(t)$

Existence and Uniqueness of Solutions

Theorem 5. If p(t), q(t), and g(t) are continuous on an interval (a, b) that contains the point t_0 , then for any choice of the initial values Y_0 and Y_1 , there exists a unique solution y(t) on the same interval (a, b) to the initial value problem

(4)
$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t); y(t_0) = Y_0, y'(t_0) = Y_1.$$

Example 1 Determine the largest interval for which Theorem 5 ensures the existence and uniqueness of a solution to the initial value problem

$$(t-3)\frac{d^2y}{dt^2} + \frac{dy}{dt} + \sqrt{t}y = \ln t; \quad y(1) = 3, \quad y'(1) = -5.$$

A special type of DE:

Cauchy–Euler, or Equidimensional, Equations

Definition 2. A linear second-order equation that can be expressed in the form (6) $at^2y''(t) + bty'(t) + cy = f(t)$,

where a, b, and c are constants, is called a Cauchy-Euler, or equidimensional, equation.

- How do you solve a Cauchy-Euler Equation?
- We first turn our attention to the homogeneous case (only)

Solving the Homogeneous Cauchy-Euler Equation (aux. equation has distinct real roots)

 $\underline{DE}: at^2y'' + bty' + cy = 0$

<u>Guess</u>: $y = t^r$ derive *r* values

Solving the Homogeneous Cauchy-Euler Equation (aux. equation has distinct real roots)

 $\underline{DE}: at^2y'' + bty' + cy = 0$

<u>Guess</u>: $y = t^r$

<u>Auxiliary Equation</u>: $ar^2 + (b - a)r + c = 0$

Situation 1:

If r_1 and r_2 are distinct real roots of the auxiliary equation, then $y_1 = t^{r_1}$ and $y_2 = t^{r_2}$ Are 2 independent solutions to the homogeneous Cauchy-Euler Equation

Example 2 Find two linearly independent solutions to the equation $3t^2y'' + 11ty' - 3y = 0$, t > 0.

Solving the Homogeneous Cauchy-Euler Equation (other situations)

<u>DE</u>: $at^2y'' + bty' + cy = 0$ <u>Auxiliary Equation</u>: $ar^2 + (b - a)r + c = 0$

What if the auxiliary equation has a real root of multiplicity 2 or complex roots? Derive

Situation 2:

If r is a real root of the auxiliary equation of multiplicity 2, then $y_1 = t^r$ and $y_2 = t^r \ln t$ Are 2 independent solutions to the homogeneous Cauchy-Euler Equation

Situation 3:

If $\alpha + \beta i$ is a complex root of the auxiliary equation, then $y_1 = t^{\alpha} \sin(\beta \ln t)$ and $y_2 = t^{\alpha} \cos(\beta \ln t)$ Are 2 independent solutions to the homogeneous Cauchy-Euler Equation

Example 3 Find a pair of linearly independent solutions to the following Cauchy–Euler equations for t > 0. (a) $t^2y'' + 5ty' + 5y = 0$ (b) $t^2y'' + ty' = 0$

A Condition for Linear Dependence of Solutions

Lemma 3. If $y_1(t)$ and $y_2(t)$ are any two solutions to the homogeneous differential equation

(10)
$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

on an interval I where the functions p(t) and q(t) are continuous and if the Wronskian[†]

$$W[y_1, y_2](t) \coloneqq y_1(t)y_2'(t) - y_1'(t)y_2(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix}$$

is zero at any point t of I, then y_1 and y_2 are linearly dependent on I.

As in the constant-coefficient case, the Wronskian of two solutions is either identically zero or never zero on *I*, with the latter implying linear independence on *I*.

Variation of Parameters

Theorem 7. If y_1 and y_2 are two linearly independent solutions to the homogeneous equation (10) on an interval *I* where p(t), q(t), and g(t) are continuous, then a particular solution to (11) is given by $y_p = v_1y_1 + v_2y_2$, where v_1 and v_2 are determined up to a constant by the pair of equations

 $y_1 v'_1 + y_2 v'_2 = 0,$ $y'_1 v'_1 + y'_2 v'_2 = g,$

which have the solution

(12)
$$v_1(t) = \int \frac{-g(t) y_2(t)}{W[y_1, y_2](t)} dt, \quad v_2(t) = \int \frac{g(t) y_1(t)}{W[y_1, y_2](t)} dt$$

Note the formulation (12) presumes that the differential equation has been put into standard form [that is, divided by $a_2(t)$].

Reduction of Order

Theorem 8. If $y_1(t)$ is a solution, not identically zero, to the homogeneous differential equation (10) in an interval *I* (see page 195), then

(13)
$$y_2(t) = y_1(t) \int \frac{e^{-\int p(t)dt}}{y_1(t)^2} dt$$

is a second, linearly independent solution.

Example 4 Given that $y_1(t) = t$ is a solution to $y'' - \frac{1}{t}y' + \frac{1}{t^2}y = 0$, use the reduction of order

procedure to determine a second linearly independent solution for t > 0.

Example 5 Find a general solution to $(\sin t)y'' - 2(\cos t)y' - (\sin t)y = 0$, $0 < t < \pi$.